Examination on Influence Caused by Air Injection Manners Changing in Aerobic-Anaerobic Landfill Method

Author:

Jiao Gang Zhen1,Zhang Lei1,Shi Xiong2,Fu Gui1

Affiliation:

1. Tianjin University of Technology

2. Tsinghua University

Abstract

In this study, aerobic-anaerobic landfill method (AANM) is focused on as a new way to speed up landfill stabilization, inhibit landfill gas flux, and ameliorate on leachate quality. Numerical simulation model is developed to guide the air injection craftwork and study its effect on achieving above goals. On basis of work finished in last period (0~310 days), air was injected into Lysimeters A (Lys.A) at 0.5 m, and at 2.5 m in Lys.B with the same rate of 1 L/min. In Lys.C there is no air injected. In order to interview the influence by air injection manners changing, from 310 days till 360 days, air injection manners are changed from Mono-site into Double-site in Lys.A and in Lys. B it will be changed from bottom-site (2.5m) into middle-site (1.5m). In Lys.C there will be no changing. By interviewing the comparisons on simulated results in 50 days with and without air injection manners changing, it was found that air injection manners changing in Lys.A causes TOC discharging amount increase more than 6 times, but T-N and GHE resulted from landfill gas decrease 24.1% and 71 % respectively. Air injection manners changing in Lys.B resulted in discharged TOC and T-N increase 108.1 % and 53.5 % respectively, while T-N decreases 3.7 %. On basis of mechanism assumption, mathematical model was developed and according to the simulated results for 5 years, air injected at 2.5 m achieved improvements on stabilization of solid phase organic carbon and nitrogen for 34 % and 13 %, amelioration on leachate quality for 35 % and 62 % of TOC and T-N, and the restraint of GHE for 14 times compared with no air injection case.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3