Improvement of Corrosion Detection Using Vision System for Pipeline Inspection

Author:

Idris Syahril Anuar1,Jafar Fairul Azni1,Jamaludin Zamberi1,Blar Noraidah1

Affiliation:

1. Universiti Teknikal Malaysia Melaka

Abstract

Nowadays, the utilization of cameras as an inspection tool has been increasing. The flexibility functions of camera fits to get different kind of information. This research is focusing on developing a robust visual inspection system for corrosion detection that is able to detect corrosion in any environment, and the corrosion detection will be using visual data as primary tools. A review on current pipeline inspection would give a brief detail on the improvement of the proposed inspection system. Furthermore, the inadequacies of the proposed visual corrosion detection are identified and discussed from the reviewing process on existing researches and analysis on preliminary data obtained. It is expected that the output of the proposed system will be a new method of corrosion detection and pioneer for the inspection system on robust environment.

Publisher

Trans Tech Publications, Ltd.

Reference15 articles.

1. Information on http: /www. puretechltd. com/case_studies/water_pipeline/Calgary_Bar WrappedPipe-2013. shtml.

2. J. Davis, Corrosion: Understanding the basics, ASM International, (2000).

3. Z. Liang, H.Y. Liu, P.X. Yuan, Study on Image Identification Method of In-service Pipeline Corrosion Fault, Second International Conference Information Technology Computer Science, pp.182-185, Jul (2010).

4. S. R. Bowling, Evaluating the effectiveness of a priori information on process measures in a virtual reality inspection task, J. Ind. Eng. Manage. 3 (2010) 221-248.

5. A. Voronoc and N. Stream, Pigs in the pipes, The Engineer, (2013).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context-based and image-based subsea pipeline degradation monitoring;Discover Artificial Intelligence;2023-05-02

2. Nondestructive Testing of Bridge Stay Cable Surface Defects Based on Computer Vision;Computers, Materials & Continua;2023

3. Corrosion Detection using Deep Learning and Custom Object Detection;2022 2nd Asian Conference on Innovation in Technology (ASIANCON);2022-08-26

4. Design of cable detection robot and image detection method;2022 41st Chinese Control Conference (CCC);2022-07-25

5. Machine vision based automated inspection approach for clutch friction disc (CFD);Materials Today: Proceedings;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3