Comparative Study of Various Models to Estimate Hourly Solar Irradiance: Application for Performance Analysis of a Renewable Energy DC-Micro Grid

Author:

Mauledoux Mauricio1,Caldas Oscar I.1,Mejía-Ruda Edilberto1

Affiliation:

1. Universidad Militar Nueva Granada

Abstract

This paper describes the study and analysis of different techniques for online solar irradiance prediction algorithms to properly estimate over the 24 hours of the next day in the “Universidad Militar Nueva Granada” (UMNG) campus at Cajicá, Colombia, in order to use predictions for a model predicted control of a DC-micro grid. These models were designed and tested using MATLAB® software. The performance of models were evaluated and compared among them to determine the best forecasting approach for Cajicá. The absence of seasons and the noisy solar irradiance time series caused by cloudy covering as perturbation are the main particularity of the Cajicá’s climate behavior. A meteorological database from 2010 to 2014 was used to estimate or train the model of prediction ARMAX and NNF, NAR, NARX as Artificial Neural Networks (ANNs), which were compared with error criteria such as square and absolute error criteria.

Publisher

Trans Tech Publications, Ltd.

Reference16 articles.

1. D. Salomonsson, Modeling, control and protection of low-voltage DC microgrids, (2008).

2. P. Heer, Decentralized model predictive control for smart grid applications, (2013).

3. J. Maciejowski, Predictive control with constraints, U. o. C. Department of Engineering, Ed., Prentice Hal, (2001).

4. B. Picasso, D. D. Vito, R. Scattolini and P. Colaneri, An MPC approach to the design of two-layer hierarchical control systems, Automatica, vol. 46, pp.823-831, (2010).

5. K. Trangbaek, M. Pedersen, J. Bendtsen and J. Stoustrup, Predictive smart grid control with exact aggregated power constraints, Springer, 2012, pp.649-668.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3