Affiliation:
1. Sungkyunkwan University
2. Oregon State University
Abstract
In this paper, we propose a multiple objective fitness function for cognitive engines by using the genetic algorithm (GA). Specifically, we propose four single objective fitness functions, and finally, we propose a multiple objective fitness function based on the single objective fitness functions for transmission parameter optimization. Numerical results demonstrate that we can obtain transmission parameter sets optimized for given transmission scenarios with the GA-based cognitive engine incorporating the proposed objective fitness function.
Publisher
Trans Tech Publications, Ltd.
Reference5 articles.
1. T. Yüech and H. Arslan: IEEE Commun. Surveys & Tutorials, Vol. 11 (2009), pp.116-130.
2. C. J. Rieser: Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA (2004).
3. D. Maldonado, B. Le, A. Hugine, T. W. Rondeau, and C. W. Bostian: Proceedings of IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Networks, (2005), pp.597-600.
4. T. R. Newman, B. A. Barker, A. M. Wyglinski, A. Agah, and J. B. Evans: Wirel. Commun. Mob. Comput., Vol. 7 (2007), pp.1129-1142.
5. L. -C. Wang, C. -W. Wang, and F. Adachi: IEEE J. Selected Areas in Commun., Vol. 29 (2011), pp.757-769.