Abstract
The stress distribution and modal behavior of a space inflatable torus was investigated by nonlinear finite element numerical method. This paper focused on the effect of follower pressure on the modal analysis of the torus, including the effect of configuration change and follower pressure stiffness, and focused on validating the follower pressure stiffness FEM model and its applicability to modal analysis. Research shows that the changed configuration slightly increases the natural frequencies. The follower pressure stiffness significantly reduces the natural frequencies and changes mode shapes order. The modal results are in good agreement with the corresponding shell theory solutions, indicating that the finite element model of the follower pressure stiffness for the inflatable structure modal analysis in this paper is accurate enough and reasonable.
Publisher
Trans Tech Publications, Ltd.