Study of the Milling Process for Thin Components Using a Flexible Setup Configuration

Author:

Nguyen Sy Quy1,Chatelain Jean Francois1

Affiliation:

1. University of Quebec

Abstract

In the aerospace industry, numerous large parts with complex curvatures and several thin wall/web pockets are required to ensure stiffness and low weight for aircraft structures. Costly processes and dedicated setups are usually required to machine such thin plate components. Therefore, investigating new machining methods involving flexible setups for such parts is an interesting avenue for cost savings, but a big challenge as well, due to a lack of support and part flexibility. In fact, a flexible setup is a tooling system with several adjustable positioning supports, which can easily adapt to different workpiece geometries. In this paper, an experimental investigation of the machining of pockets for thin components using flexible setup is presented. A design of experiments is proposed to verify the ability of pocket machining for thin plates of aluminum 2024-T3 in terms of quality. During the machining tests, the cutting forces were measured using a Kistler dynamometer table, while the displacement of the plates, for the flexible setup configuration, was measured using a Keyence displacement sensor. The force and displacement signals were analyzed and a fine correlation proposed between them and the resulting quality of the part, expressed in terms of profile and size errors.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3