A Study on Modelling the Superplastic Behaviour of Ti54M Alloy

Author:

Elrakayby HosamORCID,Gonzalez Diego,Gomez-Gallegos AresORCID,Mandal Paranjayee,Zuelli Nicola

Abstract

Superplastic forming is a cost-effective process for manufacturing complex-shaped titanium parts. TIMETAL® 54M (Ti54M) is a titanium alloy that has been commercially available since 2003, however studies on modelling its superplastic behaviour are scarce in the literature. Finite element modelling can be used to enable the manufacturing of complex-shaped parts economically as the number of experimental trials can be reduced. This paper illustrates the implementation of a microstructural-based model to predict the superplastic behaviour of Ti54M alloy during forming at elevated temperature. The parameters of the material model are derived in this work for the Ti54M alloy. A Matlab script has been developed for the calculation and calibration of the material model parameters based on material experimental data. The material model was implemented into the finite element commercial software Abaqus by means of a user-defined subroutine. The finite element calculations take into account also grain size evolution. Finally, a pressure profile was numerically calculated for forming a non-commercial part via superplastic forming targeting optimal conditions for the material.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3