Synthesis and Catalytic Properties of CoFe2O4/Fe2O3 Nanosized Composite Material

Author:

Shabelskaya N.P.1,Egorova M.A.1,Vasilieva E.V.1

Affiliation:

1. Platov South Russian State Polytechnic University (NPI)

Abstract

The present research is devoted to the formation process of a nanoscale composite material with the composition of CoFe2O4/α-Fe2O3. The synthesized material has been studied by the following methods: x-ray phase analysis and scanning electron microscopy. The produced sample is analyzed to be a CoFe2O4 cabic spinel with a unit cell parameters of a = 0.8394 nm and α-Fe2O3. The average crystallite size of the resulting samples, determined by the Debye-Scherrer equation, is 4.8 nm for the cobalt (II) ferrite and 7.9 nm for α-Fe2O3. Reaction rate increase is determined by the incease in hydrogen peroxide amount in the solution. The synthesized composite material is found to exhibit increased catalytic activity in the oxidative degradation reaction of organic dye by hydrogen peroxide. The catalytic activity is established to be particularly high, when the process is occurring in acidic medium. The obtained samples have a highly developed surface and may be of interest as catalysts, adsorbents.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3