Fracture Parameters of Alkali-Activated Aluminosilicate Composites with Ceramic Precursor

Author:

Šimonová Hana1ORCID,Kumpová Ivana1ORCID,Rozsypalová Iva1,Bayer Patrik1,Frantik Petr1,Rovnaníková Pavla1,Keršner Zbyněk1

Affiliation:

1. Brno University of Technology

Abstract

This paper deals with selected alkali-activated aluminosilicate composites with a ceramic precursor in terms of their characterization using mechanical fracture parameters. Three composites were studied. They were manufactured using brick powder as a precursor and an alkaline activator with a dimensionless silicate modulus of Ms = 1.0, 1.2 and 1.4. The test specimens were nominally 40 × 40 × 160 mm in size and had a central edge notch with a depth of 1/3 of the specimen’s height. At least 6 specimens made of each composite were tested at the age of 28 days. The specimens were subjected to three-point bending tests, during which diagrams showing force vs. deflection at midspan (Fd diagrams) and force vs. crack mouth opening displacement (FCMOD diagrams) were recorded. After the processing of these diagrams, values were determined for the static modulus of elasticity, effective fracture toughness (including its initiation component from the analysis of the first part of the FCMOD diagrams), effective toughness and specific fracture energy using the effective crack model, Work-of-Fracture method, and Double-K fracture model. After the fracture experiments had been performed, compressive strength values were determined for informational purposes from one part of each specimen that remained after testing. In order to obtain visual information about the internal structure of the composites before and after the mechanical testing, the selected specimen was examined via X-ray microtomography. Tomographic measurements and image processing were performed for the qualitative and quantitative evaluation of internal structural changes with an emphasis on the calculation of porosimetry parameters as well as the visualization of the fracture process zone. The fractal dimension of the fracture surface and fracture process zone was determined. The porosity and microstructure images of selected samples taken from specimens were assessed.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3