Electrical Conductivity of Y3+ Doped Ba(Ce,Zr)O3 in Wet N2 Atmosphere Prepared with the Addition of Brij-97

Author:

Mohd Affandi Nur Syafkeena1,Osman Nafisah1,Hassan Oskar Hasdinor1

Affiliation:

1. Universiti Teknologi Mara

Abstract

Y-doped barium cerate-zirconate ceramic oxide is proven to be a competent material as an electrolyte with high proton conductivity as well as chemical and mechanical stabilities in carbon dioxide and water vapour atmospheres. This ceramic oxide requires high processing temperature which will results in the increase of particle/grain size. Hence, modification on the synthesis route has been studied in reducing the particle/grain size of the ceramic by lowering the calcination temperature. In this work, BaCe0.54Zr0.36Y0.1O2.95 (BCZY) powder was synthesized with addition of surfactant (Brij-97) through an established modified sol-gel route. Single BCZY perovskite phase was successfully obtained at calcination temperature of 950°C which was lower than our previous study (T=1100°C). The prepared sample was made into pellet by a dry pressing technique with diameter, d=13 mm and thickness, t~2 mm and then subjected to a two-step sintering method prior to morphological and electrical measurements. Impedance measurement was carried out at intermediate temperatures (500-800°C) using an Electrochemical Impedance Spectroscopy (EIS) in wet nitrogen atmosphere. Impedance spectrum was analysed to obtain the behaviour of grain core and grain boundary responses by a fitting procedure using a brick-layer model. Scanning electron microscope (SEM) analysis of fractured pellet revealed that BCZY prepared with the assisted of Brij-97 exhibited dense, homogenous and less agglomerate grain with grain size around 88 nm, which may explain the enhancement in the total conductivity of the BCZY electrolyte.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3