Morphology, Sizes and Oxidation of Composite Copper Nanopowders, Obtained by an Electron Beam with Different Energies

Author:

Khartaeva E.Ch.1,Nomoev Andrey V.1,Syzrantsev V.V.1,Dzidziguri E.L.2,Khiterkheeva N.S.3,Bardakhanov S.P.4,Batueva E.V.1,Kalashnikov S.V.1

Affiliation:

1. Institute of Physical Materials Science

2. National University of Science and Technology (MISiS)

3. Banzarov Buryat State University

4. Siberian Branch of the Russian Academy of Sciences

Abstract

Copper nanopowders were obtained by the gas-phase method under the influence of an electron beam of different powers. Thermodynamic modeling of the phase equilibrium state of the Cu-O2-C system during heating in argon and atmospheric pressure was carried out using the TERRA software package. The obtained nanopowders of copper were studied by X-ray phase analysis and transmission electron microscopy. The morphology, structure, size distribution, and average size of copper nanoparticles are determined. The dependence of the content of copper oxides in a copper-containing nanopowder on the electron beam power has been established. It is shown that copper nanopowders obtained at high power are not oxidized.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3