Affiliation:
1. Tallinn University of Technology
Abstract
In this manuscript surface roughness, coefficient of friction (COF) and tensile properties of a post-consumer cotton fabric are evaluated. Fabric roughness, COF, effective tensile force and breaking force measured by optical profilometer, CETR tribometer and Instron tensile machine, respectively. The results proved that COF could rely on fabric pattern. Moreover, microscopically roughness influences on friction and tensile properties due to surface defects. It was found that increase in roughness of textile cotton relates to increase of number of random directional fibers. These fibers intensify friction and reduce tensile properties. The reduced values of tensile (140.49 N), breaking (123.23 N) and effective tensile force (251.43 N) of warp direction are greater than values of tensile (79.54 N), breaking (67.97 N) and effective tensile force (179.69 N) of weft direction. These effects can lower cutting performance of post-consumer textile.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics