CHAPTER 4 High Temperature Oxidation of Stainless Steels

Author:

Chandra-ambhorn Somrerk1,Hayashi Shigenari2,Latu-Romain Laurence3,Wongpromrat Patthranit4

Affiliation:

1. King Mongkut’s University of Technology North Bangkok

2. Hokkaido University

3. Université Grenoble Alpes

4. King Mongkut’s Institute of Technology Ladkrabang

Abstract

This chapter is dedicated to the description of high temperature oxidation of both chromia and alumina forming alloys. The defect structures of iron and chromium are firstly reviewed. The effects of elements on stainless steel oxidation behaviour are further addressed. For the chromia-forming stainless steel, the oxidation rate is reduced with the increased silicon content but not in a monotonic manner. Titanium and niobium can reduce breakaway oxidation of Fe–18Cr–10Ni austenitic stainless steel. Titanium can enhance the adhesion of scale to the Fe–18Cr by mechanical keying effect of TiO2 formed at the steel/scale interface. For the alumina-forming stainless steel, the formation of alumina and its transformation during oxidation are reviewed. Chromium can be added to reduce the critical aluminium content in the steels in order to form alumina at high temperatures. The addition of reactive elements with appropriate level can improve scale adhesion and reduce the steel oxidation rate. Refractory element like molybdenum can increase strength of material but also accelerate the oxidation rate of the steels containing reactive elements. The development of new alumina-forming austenitic alloy grades is finally described.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3