Application of Neural Network in Predicting Forging Hardness

Author:

Luh Yuan Ping1,Tu Chang Hung1,Wang Huang Li1,Chiu Chien Jung1

Affiliation:

1. National Taipei University of Technology

Abstract

This study used cold forging to produce car components with the desired hardness without using postprocessing methods such as heat treatment, surface blasting, and polishing. Material diameter, mold neck diameter, and hardness of the material after annealing were used as parameters, and nine sets of experimental parameters were obtained using the Taguchi method. Under the premise of high-quality forging, this study determined the optimal hardness and the relationship between formation parameters and forging hardness. By inputting the hardness data obtained from the Taguchi L9 orthogonal array into a Matlab-implemented neural network, this study determined a hardness formula. Finally, using the inbuilt graphical user interface software of Matlab, a simple program was written that can be used to predict hardness and that could extensively reduce the costs and time associated with forging development.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference12 articles.

1. F.T. Mahi, D. Schmoeckel: Metal Forming (Warm): Comparison with Hot and Cold Forming (Elsevier BV, Netherlands 2016).

2. W.K. Shi, S.H. Li, W.C. Yao, Y.K. Fuh, S.C. Tsai, and T.K. Sue: Molding Technology Handbook Series—Technical Manual for Forging Mold (Metal Industries Research & Development Centre Publications, Taiwan 2002).

3. Y.P. Luh, H.L. Wang, J.R. Ciou and J.F. Jhang: IOP Conference Series: Materials Science and Engineering Vol. 538 (2019), pp.1-12.

4. H.H. Lee, in: Taguchi Methods: Principles and Practices of Quality Design, Gau Lih Book Publishing, New Taipei City, Taiwan (2013).

5. K.Y. Huang, in: Neural Networks, Chuan Hwa Publishing, Taipei, Taiwan (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3