Formation of Ferrosilicon Alloy at 1550°C via Carbothermic Reduction of SiO2 by Coal and Graphite: Implication for Rice Husk Ash Utilization

Author:

Kongkarat Somyote1,Boonyaratchinda Meekaruna1,Chobtham Chirakit1

Affiliation:

1. Thammasat University

Abstract

Ferrosilicon alloy has been commercially produced in an electric furnace at 1700 - 1750 °C, using quartz as a silica source. With an aim to reduce production cost, rice husk ash (RHA) had been introduced to the process as a silica source. The present study reports an in-depth investigation on the ferrosilicon alloy formation at 1550 °C via carbothermic reduction using RHA with coal and graphite. Blend A: RHA/Fe2O3/Coal and B: RHA/Fe2O3/Graphite were prepared according to the C/O molar ratio of 1/1. The well-mixed samples were compacted into a pellet and then heated at 1550 °C in the tube furnace for 30 and 60 minutes while the argon flowing at the rate of 1 L/min. XRD and SEM results show that the bulk metal mainly composes of FeSi phase, while SiC and other slag phases adhere at the surface of the droplet. Characteristics of the carbonaceous materials, especially ash oxides content affect the kinetic of ferrosilicon formation. Silicon concentration in the produced metal droplets was measured using an ICP technique. For blend A, Si content in the metal was 18.3 wt% and 81.9 wt% after 30 and 60 minutes, respectively. While, Si recovery in the metal for blend B reached 88.4 wt% since 30 minutes. The experimental results show that the production of ferrosilicon alloy from RHA can be produced at 1550 °C, which the temperature lower than that of the commercial method by 150-200 °C. The finding in this research is beneficial for ferrosilicon and agricultural industries and thus promotes the sustainable steelmaking industry.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3