Thermomechanical, Crystallization and Melting Behavior of Plasticized Poly(Lactic Acid) Nanocomposites

Author:

Sudin Nur Ain Syafiqah1,Mustapa Izan Roshawaty1,Daud Norlinda1,Zorah Mohammed1

Affiliation:

1. Universiti Pendidikan Sultan Idris

Abstract

The incorporation of filler and plasticizer provides effective nucleation and mechanical reinforcement in polymer composites to impart flexibility, toughness, thermal stability and tensile strength of PLA composites that can be used in the development of packaging applications. In this paper, the inclusion of plasticizer and reinforcement of nanofiller in PLA matrix prepared using solvent casting method aims to improve the thermomechanical properties that consequently alter the crystallization and melting behavior of PLA composites. Plasticized PLA with different percentages of TiO2 at 2.0, 3.5, 5.0 and 7.0 % w/w were dispersed in PLA solution using mechanical mixer and ultrasonication technique to introduce a matrix reinforcing nanophase within the composite. The thermomechanical properties and thermal behavior of PLA nanocomposites were characterized using dynamic mechanical analysis (DMA) and differential scanning calorimeter (DSC). DSC cooling curves at low scanning rate of 2.0 K·min-1 proved that the presence of TBC in PLA matrix increased the crystallinity of plasticized PLA nanocomposites that initiated the formation of perfect spherulites. TBC increased the crystallization activity during cooling, which in turn reduced the recrystallization effect on heating, in parallel with DMA results that revealed small peak of cold-crystallization activity on PLA nanocomposites with the addition of plasticizer observed at temperature range of 80 °C to 100 °C. Nanofiller induced nucleation for crystallization of PLA matrix and plasticizer accelerated the overall crystallization process. Considerable adjustments of plasticizer and nanofiller in PLA matrix in having a good balance of stiffness and flexibility are a practical strategy that has a potential in biopolymer medical engineering and in the development of packaging applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3