Impact of Eu Nanoparticles Substitution for Ca Site in Bi(Pb)-2223 Cuprates Superconductor

Author:

Nurbaisyatul E.S.1,Azhan H.2,Azman Kasim2,Ibrahim Norazila1,Saipuddin Siti Fatimah2

Affiliation:

1. Universiti Teknologi MARA

2. Universiti Teknologi MARA Pahang

Abstract

The sample with nominal composition of Bi1.6Pb0.4Sr2Ca2-xEuxCu3Oy where x = 0.000, 0.0025, 0.020, 0.050 and 0.100 were synthesized through solid state reaction method. The effect of Eu2O3 nanoparticles doping on the superconducting and structural properties were studied by means of critical temperature, TC, critical current density, JC, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The amount of 2223 phase gradually decreased with the increment of Eu concentration which indicates that Eu nanoparticles substitution at Ca site favours the growth of 2212 phases. The sample with higher porosity was found to be decreased in critical temperature, TC as well as critical current density, JC due to the lack of effective surface area for current flowing. The best superconducting properties were observed at x = 0.0025 substitutes into Ca site for Bi (Pb)-2223 host sample.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3