Preparation of Semi-Solid 357.0 Slurries with Different α-Al Phase Features by Solidification from Full Liquid State and Remelting

Author:

Chen Juan1,Hu Xiao Gang1,Qu Wen Ying1,Luo Min1,Li Zhong1,Dong En Jie1,Zhu Qiang1

Affiliation:

1. Southern University of Science and Technology

Abstract

The characteristics of the solid phase, namely the volume fraction, particle size, and morphology, are dominant variables that can determine the viscosity of the semi-solid slurry. However, particle size and morphology were always being ignored and the solid fraction was simply determined using the temperature in the conventional power-law viscosity, resulting in a disagreement in the viscosity values in different researches. To make the power-law viscosity model more accurate for predicting the filling process of semi-solid die casting, it is essential to modify this viscosity model based on particle characteristics. Therefore, there is a fundamental demand to prepare semi-solid slurries with different α-Al phase features at first. This is achieved in this study by two kinds of heat history controlling methods: remelting and solidification, which can get slurries with spherical structure and dendric structure, respectively. The semi-solid 357.0 slurries with 0.11-0.43 solid fraction, 137-182μm particle size, and 0.81-0.90 shape factor were prepared in the remelting process, while dendritic structures (shape factor<0.5) with 0.1 and 0.3 solid fractions were obtained by solidification controlling from the full liquid state. Besides, the effect of parameters on the evolution of the α-Al phase has been discussed. These slurries with different solid features will be further used to quantify the influence of primary phase characteristics on rheological behavior and make the power-law viscosity model more accurate for simulation.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3