Investigation of the Effect of Tungsten Carbide (WC) Nanopowder on Iron-Based Powder Structural Materials

Author:

Gavrish V.M.1,Chayka T.V.2,Baranov G.A.2

Affiliation:

1. Scientific and Educational Center "Advanced technologies and materials", Sevastopol State University

2. Sevastopol State University

Abstract

Studies of a powder used as a modifier obtained from solid-alloy waste, such as tungsten carbide (drill balls), are presented. Dispersion, particle morphology and phase analysis of the powder were studied. The powder obtained from solid-alloy waste is a phase – it is tungsten carbide WC, it consists of nanoobjects of various shapes (nanoparticles, nanoplastics) up to 100 nm in size, with a slight presence of agglomerates up to 250 nm in size. The influence of tungsten carbide nanopowder as a modifier on the mechanical properties (strength and hardness) of PK70D3 iron-based powder structural steel has been studied. For the study, two different modes of preparation of powder alloy have been used with the use of one-stage and two-stage sintering. The influence of additive nanopowder of tungsten carbide on the mechanical properties of structural alloy powder based on iron PK70D3 has been defined: strength increases by more than 23% (in single-stage sintering), by more than 28% (in double-sintering), hardness decreases by more than 6% in single-stage sintering and increases by more than 26% with two stages of sintering, compared to the initial alloy. It has been shown that samples, obtained using double sintering with a tungsten nanopowder modifier (2.5%), have higher values of strength (more than 80%) and hardness (more than 13%), compared to modified samples, obtained by single-stage sintering technology. Thus, the modification of a 2.5 % nanoprobe of tungsten carbide, a widely used structural powder alloy based on iron PC70D3 allows for a significant change in mechanical properties. The use of powder alloys in double sintering technology provides the material hardness and the strength increase.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3