Surface Modification of Low Carbon Steel by Using Electrophoretic Deposition Technique with Graphene Oxide Powder

Author:

Nemee Pichawan1,Jaitanong Nittaya1,Narksitipan Suparut1

Affiliation:

1. Maejo University

Abstract

In this research, low carbon steel surface was modified using electrophoretic deposition (EPD) technique from a graphene oxide (GO) water suspension. The electrophoretic deposition (EPD) is the technique used for manipulation and deposition of nanomaterials. The GO coating was used as a layer to increase the hardness of low carbon steel. GO was successfully synthesized using the modified Hummers method. EPD technique was performed by applying voltage at 9 volts and the deposition time of 15 mins. The working distance between the cathode and anode was fixed at 15 mm. The GO film had been deposited by EPD technique where it was carburized at 900, 950, 1000 and 1050°C, for 60 mins. The microstructure of the carbide film was investigated using scanning electron microscopy (SEM). As the carburization temperature raised (1050°C), more volume carbon atoms reacted with iron atoms to form iron carbon (Fe3C) layer on to the substrate surface. The carbide films are columnar crystal growth with a particle size of approximately 50 μm. The growth rate of the carbide films at 1050°C is about 8 µm/min. Energy dispersive X-ray spectrometer (EDS) was studied for chemical elements analysis. Fe, C and O elements were then detected. At carburization temperature of 1050°C, it showed that C element distribution is higher than others’ temperatures. Moreover, the hardness on the carbide films was investigated using a Vickers hardness tester under an applied load of 500 grams for 10 seconds. It was found that the hardness increased with the increasing carburization temperatures. The hardness of low carbon steel is 172.99 ± 2.28 HV. After the carburization processing via GO at temperature of 1050°C, the highest hardness of 821.42 ± 35.33 HV was obtained. It was observed that the mechanical properties of low carbon steel surface were found to be strongly influenced by the process of carburization temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3