Affiliation:
1. Russian Academy of Sciences
Abstract
In the present paper, a composite containing mixed oxides of tin and lead has been synthesized by the method of pulsed high-voltage discharge. Material was characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis and transmission electron microscopy. The composite consists of SnO2 and PbO particles with an average size of ~350 nm, and SnPb2O4 nanowhiskers with size of 100 nm in diameter and few microns in length. The electrochemical performance of nanocomposite as a potential anode of lithium-ion battery has been investigated by the cyclic voltammetry and galvanostatic charge/discharge test in the potential range of 3.0–0.005 V. The reversible capacity of 821 mA·h/g was realized after 5-fold cycling at a current density of 100 mA/g. It was established that further cycling of the material is accompanied by a dramatic capacity fade: only 13 % of the initial capacity was obtained already after 10 cycles. The observed degradation in performance of nanocomposite results from its inability to compensate large lithiation/delithiation-induced volume expansion.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics