Formation of Metal-Intermetallic Laminate Composites by Spark Plasma Sintering of Metal Plates and Powder Work Pieces

Author:

Lazurenko Daria V.1,Mali Vyacheslav I.2ORCID,Thoemmes Alexander1

Affiliation:

1. Novosibirsk State Technical University

2. Lavrentyev Institute of Hydrodynamics SB RAS

Abstract

Laminate composites with an intermetallic component are some of the most prospective constructional and functional materials. The basic formation method of such materials consists in heating a stack composed of metallic plates reacting at elevated temperatures to form intermetallic phases. The temperature of the process is usually approximately equal to a melting point of a more easily fusible component. In this study, an alternative technology of producing a titanium – titanium aluminide composite with a laminate structure is suggested. It consists in combining metallic (titanium and aluminum) powder mixtures pre-sintered at 400 оС with titanium plates, alternate stacking of these components and subsequent spark plasma sintering (SPS) of the fabricated workpieces. Applying this technology allowed for the fabrication of metal-intermetallic laminate (MIL) materials with an inhomogeneous structure of intermetallic interlayers. The phases revealed in the composite by X-Ray diffraction (XRD) were α-Ti, Al, Al3Ti and Al2Ti. Moreover, the results of the energy-dispersive analysis gave the evidence of the formation of Ti-enriched phases in powder layers after SPS. A small number of voids were observed between the structural components of the intermetallic layers. Voids were also detected at “metal-intermetallic” interfaces; however, the quality of connection between different layers in the composite was very high. The microhardness of an intermetallic layer formed in the composite was comparable to the microhardness of the Al3Ti compound. The microhardness of titanium was equal to 1600 MPa.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3