Determination of Proper Loading Profiles for Hydro-Mechanical Deep Drawing Process Using FEA

Author:

Akay S.B.1,Şükür E.F.1,Turkoz M.1,Halkaci S.1,Koç M.2,Avcı S.1

Affiliation:

1. Selcuk University

2. İstanbul Şehir University

Abstract

Hydro-mechanical Deep Drawing (HMD) is an advanced manufacturing process developed to form sheet metal blanks into complex shapes with smooth surfaces using hydraulic pressure as an additional source of deformation force. There are many factors affecting the successful production of desired parts using this manufacturing process. The most important factors are the fluid pressure and blank holder force. Having proper values of these parameters during forming has a direct impact on part properties such as drawing ratio and thinning. In order to determine desired the fluid pressure and blank holder force profiles, which are different for every geometry, material and other process conditions, finite element simulations are conducted to save time and cost. Abaqus FEA software is used in this study. In order to define the continuously changing fluid pressure application area on the sheet material, which is not an available module or standard interface of software, sub-programs (sub-routines) are developed to properly and dynamically define the fluid pressure area. Proper, if not optimal, fluid pressure and blank holder force profiles, which allow the formability (LDR) of sheet material to be maximum, were obtained using trial and error method. Maximum thinning values on metal blank were used as a control parameter to determine if selected loading profiles result in the highest LDR with lowest thinning.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AISI 304 PASLANMAZ ÇELİK SACIN HİDROMEKANİK DERİN ÇEKİLMESİ;Konya Journal of Engineering Sciences;2020-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3