Research and Optimization on BM3D Denoising Algorithm

Author:

Guo Zi Yu1,Zhou Xiao Bo1

Affiliation:

1. Beijing Jiao Tong University

Abstract

By grouping up the similar blocks in the picture and Collaborative Filtering, BM3D gets a good denoising effect. But denoising performance declined when the noise enhanced. A reason of poor denoising effect in strong noise was put forward in this paper. Then the denoising ability of BM3D was enhanced by optimizing the parameters.BM3D is proved superior to the traditional filtering denoising algorithm and the optimized BM3D gets a better effect than the original one in strong noise in simulation.

Publisher

Trans Tech Publications, Ltd.

Reference5 articles.

1. Kostadin, Dabov. Image Denoising by Sparse 3-D Transform-Domain[J]. IEEE TRANSACTIONS ON IMAGEPROCESSING, 2007, 16(8): 2080-(2095).

2. Dabov K, Foi A, Katkovnik V, et al. A nonlocal and shape-adaptive transform-domain collaborative filtering. Proceedings of International Workshop Local and Non-Local Approximation Image Processing, 2008, 179-186.

3. Dabov K, Foi A, Katkovnik V, et al. BM3D image denoising with shape-adaptive principal component analysis. Proceedings of Workshop on Signal Processing with Adaptive Sparse Structured Representations, 2009, 221-226.

4. Xiangle Liu, Xiangchu Feng. Image denoising by mixing wavelet transformation with sparse 3D collaborative filtering[J]. COMPUTER ENGINEERING AND APPLICATIONS, 2010, 46(16): 185-187.

5. Yingkun Hou. Research on Nonlocal Transform Domain Image Denoising and Enhancement and Their Performance Evaluation[D], Nanjin: Nanjin University of Science and Technology, (2012).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Patch-Based Composite Denoising Algorithm for Wireless Transmission;IEEE Transactions on Aerospace and Electronic Systems;2022-12

2. MLR: An Efficient Denoising Model for Highly Corrupted Images;IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3