The First Solar Power Tower System in Saudi Arabia

Author:

Abu-Hamdeh Nidal H.1,Alnefaie Khaled A.1

Affiliation:

1. King Abdulaziz University

Abstract

This article is about designing and building a small scale prototype tower system to gather solar energy and store it in a molten salt tank. The system consists of several heliostats directing incident solar rays to a receiver at the top of a tower. It is intended to establish highly reputable research and development facility in solar thermal energy systems. A thorough investigation in the field of building and utilizing solar tower system was conducted. The authors studied and presented the current state of art of the technological developments concerning the solar tower systems and an assessment of their advantages and disadvantages. The adaptability of CSP (Concentrating Solar Power) power systems to Saudi Arabia climate was closely investigated. A scheme for a pilot solar power plant that it most suited to the conditions of Saudi Arabia was proposed. The next stage will be building, fabrication, and constructing the various subsystems; heliostats, tower, receiver, and storage tank.

Publisher

Trans Tech Publications, Ltd.

Reference11 articles.

1. S.A. Kalogirou, Solar Energy Engineering: Processes and Systems, second ed., Elsevier, California, (2013).

2. S.M. Flueckiger, Z. Yang, S.V. Garimella, Review of molten-salt thermocline tank modeling for solar thermal energy storage, Heat Transfer Engineering 34 (2013), 787–800.

3. Information on http: /www. metaefficient. com/renewable-power/storing-solar-power-in-molten -salt. html.

4. Information on http: /en. wikipedia. org/wiki/Heliostat.

5. W. Xiudong, L. Zhenwu, W. Zhifeng, Y. Weixing, Z. Hongxing, Y. Zhihao, A new method for the design of the heliostat field layout for solar tower power plant, Renewable Energy 35 (2010), 1970–(1975).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3