A Combined Location Method for Mobile Robots Based on Dead Reckoning and WLAN

Author:

Jia Fang1,Liu Kui1,Xu De Cheng1

Affiliation:

1. Southeast University

Abstract

To minimize the deficiency of the existing indoor location methods for mobile robots, the RSSI (received signal strength indication) model of WLAN is established. Then a combined location method for mobile robots based on DR (dead reckoning) and WLAN is proposed, which employs PMLA (probability matching location algorithm) and KF (Kalman filter) for information fusion. Simulation results reveal that the combined location approach works well in eliminating the cumulative error of DR and reducing the fluctuation of WLAN location. As a result, the proposed method is capable of enhancing the positioning accuracy of mobile robots to a certain extent, promising a low-cost and reliable location scheme for its development.

Publisher

Trans Tech Publications, Ltd.

Reference8 articles.

1. Bulusu N, Heidemann J, Estrin D. GPS-less low-cost outdoor localization for very small devices[J]. IEEE Personal Communications. 2000, 7(5): 28-34.

2. Sanchez A, de Castro A, Elvira S, et al. Autonomous indoor ultrasonic positioning system based on a low-cost conditioning circuit[J]. Measurement. 2012, 45(3): 276-283.

3. Adorni G, Cagnoni S, Enderle S, et al. Vision-based localization for mobile robots[J]. Robotics and Autonomous Systems. 2001, 36(2–3): 103-119.

4. Zou Y C, Liang H. Indoor intelligent mobile robot based on Zigbee wireless location[J]. Journal of WuHan University of Technology. 2012, 34(2): 151-155. (in Chinese).

5. Wang T M, Tao Y. Hybrid location method for home service robot based on intelligent space[J]. Journal of Beihang University. 2009, 35(2): 231-235. (in Chinese).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on dead-reckoning based localization for cleaning robot;Journal of Physics: Conference Series;2020-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3