Implementation of Magnetic Damping to Reduce Chatter Amplitude and Tool Wear during Turning of Stainless Steel AISI 304

Author:

Nurul Amin A.K.M.1,Mohamad Ummu Atiqah Khairiyah2,Arif Muammer Din3

Affiliation:

1. International Islamic University of Malaysia

2. International Islamic University Malaysia (IIUM)

3. International Islamic University Malaysia

Abstract

Machine tool chatter is a type of intensive self-excited vibration of the individual components in a machine-tool-fixture-work system. Chatter affects the cutting process and may lead to negative effects concerning surface quality, cutting tool life, and machining precision. However, modern manufacturing industries and their end users demand fine surface finish, high dimensional accuracy as well as low operation costs which include the cost of tooling. Therefore, any effective damping technique, which reduces or eliminates chatter, will significantly improve tool life and will be a profitable technique to implement in the industry. This paper presents a novel chatter control method in turning of (AISI 304) stainless steel by using permanent magnets. The study compared tool wear under two different cutting conditions: normal turning and turning with magnetic damping. A specail fixture made of mild steel was designed and fabricated in order to attach a powerful neodymium permanent magnet (4500 Gauss) to the carraige of a Harrison M390 engine lathe. The arrangement ensured that the magnet was placed exactly below the tool shank. The main idea was that the magnet will provide effective damping by attracting the steel tool shank and restricting its vertical vibratory motion during cutting operations. A Kistler 50g accelerometer, placed at the bottom front end of the tool shank was used to sense vibration. The data was then collected using a Dewetron DAQ module and analyzed using Dewesoft (version 7) software in a powerful Dell workstation. Response surface methodology (RSM) in Design Expert software (version 6) was used to design the sequence of experiments needed based on three primary cutting parameters: cutting speed, feed, and depth of cut. The tool overhang was kept constant at 120 mm in order to facilitate the attachment of the magnet fixture. Analysis of the recorded vibration signals in the frequency domain indicated that significant reduction in the vibration amplitude, as much as 86%, was obtained with magnetic damping. Next tool wear was analysed and measured using a scanning electron microscope (SEM). It is found that tool wear is reduced considerably by a maximum of 87.8% with the magnetic damping method. Therefore, this new magnetic damping method can be very cost effective, in terms of vibration reduction and tool life extension, if applied to industrial turning operations of metals.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3