Suspension Parametric Analysis of Conventional Bus through Finite Element Modal Simulation

Author:

Kong Y.S.1,Omar Mohammed Zaidi2,Chua L.B.3,Abdullah Shahrum2

Affiliation:

1. APM Engineering and Research, Universiti Kebangsaan Malaysia

2. Universiti Kebangsaan Malaysia

3. APM Engineering and Research

Abstract

Vehicle dynamic response of urban bus for common manoeuvres enhancing purpose has been investigated. Nowadays, increasing concerns on human driver comfort and emerging demands on suspension systems for off-road vehicles call for an effective vehicle ride dynamics model. This study devotes an analytical effort in developing a comprehensive vehicle ride dynamics simulation model. A bus simulation model which consists of two sets of different parabolic leaf springs and shock absorbers, front and rear axle, one dimensional tyres, anti-roll bars and simplified bus body with assumption the chassis is rigid has been built in finite element (FE) environment. Modal analysis is further to be performed in order to calculate the mode shapes and associated frequencies. Subsequently, suspension parameters analysis has been conducted to identify the sensitivity of every component towards the vehicle vibration behaviour. The related suspension parameters in the sensitivity analysis are parabolic leaf spring stiffness, anti-roll bars bending moment, and shock absorber damping characteristics respectively. The mode shapes and natural frequencies change due to the suspension parameters modification could be obviously visualized through finite element method. The visualization capabilities of the mode shape would provide an insight understanding of vehicle vibration behaviour in which is generally complex. The developed vehicle ride dynamics model could serve as an effective and efficient tool for predicting vehicle ride vibrations, to seek designs of primary and secondary suspensions, and to evaluate the roles of various operating conditions.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Modal Analysis of a Passenger Bus: Theoretical and Numerical Studies;Transportation Research Record: Journal of the Transportation Research Board;2021-09-08

2. Modal analysis of central impression cylinder based on fluid–solid coupling method;Journal of Low Frequency Noise, Vibration and Active Control;2020-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3