Research on Data Compression of WSN Based on Compressed Sensing

Author:

Li Jun Xia

Abstract

For Wireless Sensor Networks (WSN) is responsible for sensing, collecting, processing and monitoring of environmental data, but it might be limited in resources. This paper describes in detail the compressed sensing theory, study the wireless sensor network data conventional compression and network coding method. The linear network coding scheme based on sparse random projection theory of compressed sensing. Simulation results show that this system satisfies the requirements of the reconstruction error of packets needed to reduce the number of nodes to the total number of 30%, improves the efficiency of data communications in wireless sensor network, reduce the energy consumption of the system. With other wireless sensor network data compression algorithm, the proposed algorithm has the advantages of simple realization, the compression effect is good, especially suitable for resource limited, and the accuracy requirements are not particularly stringent in wireless sensor networks.

Publisher

Trans Tech Publications, Ltd.

Reference8 articles.

1. Shi G. M, Liu Danhua, tall. Compressed sensing theory and its research progress [J], electronic Journal, 2009, 5: 1070-1081.

2. Liu Danhua, stone light, Zhou Jia agency. A signal sparse decomposition method for redundant dictionary[J]. Journal of Xi'an Electronic and Science University (NATURAL SCIENCE EDITION), 2008, 35 (2): 228-232.

3. Sun Hong, Zhang Zhilin, Yu Mu. From sparse to structured sparse: a Bayesian approach [J]. signal processing, 2012, 28 (6); 759-773.

4. Li Hongliang, Chen Liping, Zhang Ruirui. Design of a sensor network node and system of agricultural information[J]. Computer engineering and science, 2010, 32 (11): 29-33.

5. Si Haifei, Yang Zhong, Wang Jun. Research and application of wireless sensor network[J]. Chinese Journal of electronics, 2011, 39 (3A): 116-120.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CNDTSN;Proceedings of the ACM Turing Celebration Conference - China;2019-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3