XRD and FTIR Studies of Nanocrystalline Cellulose from Water Hyacinth (Eichornia crassipes) Fiber

Author:

Asrofi Mochamad1ORCID,Abral Hairul1,Kasim Anwar1,Pratoto Adjar1

Affiliation:

1. Andalas University

Abstract

The isolation and characterization of nanocrystalline cellulose (NCC) from water hyacinth (WH) fibers were carried out. There are two treatments to obtain NCC from WH fibers by chemical and mechanical treatments. The chemical treatment involved alkalization with NaOH 25% in a highly-pressured tube, acid hydrolysis with 5M HCl, and bleaching with (NaClO2:CH3COOH) in ratio 5:2. The mechanical treatment was performed by using ultrasonic homogenizing at 12000 Rpm for 2 h. The morphological surface was observed by Transmission Electron Microscopy (TEM). TEM reported that the size of NCC was 10–40 nm. Crystallinity index and functional group analysis of the NCC WH fibers were also examined using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) techniques. XRD reported that the crystallinity index increased significantly after chemical and mechanical treatment due to the presents of crystalline area in the WH fibers. The crystallinity index of raw fiber, digester, bleaching, and ultrasonic homogenizing were 7%, 68%, 69%, and 73% respectively. The content cellulose of final product was 68% as measured by the chemical composition test. Meanwhile, FTIR reported that WH fibers after being given chemical treatment lead the functional group change due to removal hemicellulose and lignin. The result of XRD and FTIR were indicated that the sample of NCC WH fibers presents the structure of cellulose crystal type I.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3