Thin Film of Giant Magnetoresistance (GMR) Material Prepared by Sputtering Method

Author:

Djamal Mitra1,Ramli 2

Affiliation:

1. Institut Teknologi Bandung

2. Universitas Negeri Padang

Abstract

In recent decades, a new magnetic sensor based on magnetoresistance effect is highly researched and developed intensively. GMR material has great potential as next generation magnetic field sensing devices. It has also good magnetic and electric properties, and high potential to be developed into various applications of electronic devices such as: magnetic field sensor, current measurements, linear and rotational position sensor, data storage, head recording, and non-volatile magnetic random access memory. GMR material can be developed to be solid state magnetic sensors that are widely used in low field magnetic sensing applications. A solid state magnetic sensor can directly convert magnetic field into resistance, which can be easily detected by applying a sense current or voltage. Generally, there are many sensors for measuring the low magnetic field, such as: fluxgate sensor, Hall sensor, induction coil, GMR sensor, and SQUID sensor. Compared to other low magnetic field sensing techniques, solid state sensors have demonstrated many advantages, such as: small size (<0.1mm2), low power, high sensitivity (~0.1Oe) and good compatibility with CMOS technology. The thin film of GMR is usually prepared using: sputtering, electro deposition or molecular beam epitaxy (MBE) techniques. But so far, not many researchers reported the manufacture of thin film of GMR by dc-Opposed Target Magnetron Sputtering (dc-OTMS). In this paper, we inform the development of GMR thin film with sandwich and spin valve structures using dc-OTMS method. We have also developed organic GMR with Alq3 as a spacer layer.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3