Affiliation:
1. PLA University of Science and Technology
2. Tangshan Caofeidian Port Limited Liability Company
Abstract
The classical mean shift (MS) algorithm is the best color-based method for object tracking. However, in the real environment it presents some limitations, especially under the presence of noise, objects with partial and full occlusions in complex environments. In order to deal with these problems, this paper proposes a reliable object tracking algorithm using corrected background-weighted histogram (CBWH) and the Kalman filter (KF) based on the MS method. The experimental results show that the proposed method is superior to the traditional MS tracking in the following aspects: 1) it provides consistent object tracking throughout the video; 2) it is not influenced by the objects with partial and full occlusions; 3) it is less prone to the background clutter.
Publisher
Trans Tech Publications, Ltd.