Affiliation:
1. Hebei University of Science and Technology
Abstract
This paper is concerned with the mean-square exponential stability analysis problem for a class of stochastic interval cellular neural networks with time-varying delay. By using the stochastic analysis approach, employing Lyapunov function and norm inequalities, several mean-square exponential stability criteria are established in terms of the formula and Razumikhin theorem to guarantee the stochastic interval delayed cellular neural networks to be mean-square exponential stable. Some recent results reported in the literatures are generalized. A kind of equivalent description for this stochastic interval cellular neural networks with time-varying delay is also given.
Publisher
Trans Tech Publications, Ltd.