Experimental Correlation for the Effect of Metallurgical Parameters on the Hardness of 356 and 319 Aluminum Alloys Using Minitab Software

Author:

Tash Mahmoud M.1,Alkahtani S.1

Affiliation:

1. Salman bin AbdulAziz University

Abstract

The present study was undertaken to investigate the effect of metallurgical parameters on the hardness and microstructural characterisations of as-cast and heat-treated 356 and 319 alloys, with the aim of adjusting these parameters to produce castings of suitable hardness and Fe-intermetallic volume fractions for subsequent use in studies relating to the machinability of these alloys. Hardness measurements were carried out on specimens prepared from 356 and 319 alloys in the as-cast and heat-treated conditions, using different combinations of grain refining, Sr-modification, and alloying additions. Aging treatments were carried out at 155 °C, 180 °C, 200 °C, and 220 °C for 4 h, followed by air cooling, as well as at 180 °C and 220 °C for 2, 4, 6, and 8 h. Peak hardness was observed in 356 alloys when aging was carried out at 180oC/4h. In the case of unmodified or modified 356 alloys containing mostly α-Fe intermetallics, aging at 180 °C up to 8h produced a sharp rise in hardness during the first two hours of aging, followed by a broad peak or plateau over the 2-8 h aging period. Aging at 220 °C revealed a hardness peak at 2h aging time for both 356 and 319 alloys. Addition of Mg to unmodified or modified 319 alloys produced a remarkable increase in hardness at all aging temperatures. This may be explained on the basis of the combined effect of Cu-and Mg-intermetallics in the 319 alloys, where hardening during aging occurs by the cooperative precipitation of Al2Cu and Mg2Si phase particles.[, ] For 356 and 384 alloys, the Mg-containing 319 alloys (~same Mg concentration as in 356 alloys) displayed higher hardness values than the 356 alloys for the aged condition, where hardening occurs by cooperative precipitation of Al2Cu and Mg2Si phase particles in 319 alloys compared to only Mg2Si precipitation in the case of 356 alloys.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3