Embedded System for Detection, Recognition and Classification of Traffic Signs

Author:

Correia Diogo Veríssimo1,Gaspar Pedro Dinis1

Affiliation:

1. University of Beira Interior

Abstract

This study concerns the development of an embedded system with low computational resources and low power consumption. It uses the NXP LPC2106 with ARM7 processor architecture, for acquiring, processing and classifying images. This embedded system is design to detect and recognize traffic signs. Taking into account the processor capabilities and the desired features for the embedded system, a set of algorithms was developed that require low computational resources and memory. These features were accomplished using a modified Freeman Method in conjunction with a new algorithm "ear pull" proposed in this work. Each of these algorithms was tested with static images, using code developed for MATLAB and for the CMUcam3. The road environment was simulated and experimental tests were performed to measure traffic signs recognition rate on real environment. The technical limitations imposed by the embedded system led to an increased complexity of the project, however the final results provide a recognition rate of 77% on road tests. Thus, the embedded system features overcome the initial expectations and highlight the potentialities of both algorithms that were developed.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3