Synthesis and Photoelectrical Properties of Graphene-CuxO Nanostructures

Author:

Zhu Qian Qian1,Yu Jian Hua1,Wang Xiao Xia1,Xu Li Li1,Cao Lei1,Dong Li Feng1

Affiliation:

1. Qingdao University of Science and Technology

Abstract

As a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal, and mechanical properties, graphene has been investigated for many applications. In this work, we present a facile route for the integration of graphene with light-sensitive copper oxides for optoelectronic applications. Graphene synthesized by a solvothermal process is found to be a robust substrate on which photoconductive CuxO with a particle size of about 50 nm can be deposited by a simple method. The morphology of graphene and graphene-CuxO is characterized by SEM and TEM. Photoluminescence measurements are also conducted, and the results show that the excited fluorophore in the P3HT backbone is effectively quenched by the electronic interactions at P3HT/graphene interfaces; however, the incorporation of CuxO increases the excited fluorophore. Photoelectrical experiments show that clean, cheap and easily prepared CuxO/graphene has much stronger photo-induced electrical current compared with graphene, thus suggesting a promising candidate for organic photovoltaic applications.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3