Analysis of Data-Driven Prediction Algorithms for Lithium-Ion Batteries Remaining Useful Life

Author:

Jiang Lin1,Xian Wei Ming1,Long Bin1,Wang Hou Jun1

Affiliation:

1. University of Electronic Science and Technology of China (UESTC)

Abstract

As one of the most widely used energy storage systems, lithium-ion batteries are attracting more and more attention, and the estimation of lithium-ion batteries remaining useful life (RUL) becoming a critical problem. Generally, RUL can be predicted in two ways: physics of failure (PoF) method and data driven method. Due to the internal electro-chemical reactions are either inaccessible to sensors or hard to measure; the data-driven method is adopted because it does not require specific knowledge of material properties. In this paper, three data-driven algorithms, i.e., Support Vector Machine (SVM), Autoregressive Moving Average (ARMA), and Particle Filtering (PF) are presented for RUL prediction. The lithium-ion battery aging experiment data set has been trained to implement simulation. Based on the RUL prediction result, we can conclude that: (1) ARMA model achieved better result than SVM, however, the result shows a linear trend, which fail to properly reflect the degradation trend of the battery; (2) SVM often suffers from over fitting problem and is more suitable for single-step prediction; and (3) PF approach achieved a better prediction and reflected the trends of degradation of the battery owing to its combined with specific model.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3