Characterization of Oxidizing Activity of a Microbial Community in an Industrial Bioleaching Heap

Author:

Soto Pamela1,Meneses Claudio1,Contador Y.1,Galleguillos Pedro A.1,Demergasso Cecilia1ORCID,Serón M.1

Affiliation:

1. Universidad Católica del Norte

Abstract

In order to explore new options to optimize the low-grade copper ore bioleaching process, it is important to understand the kinetics of microbial oxidation at industrial level. This work studies the changes of iron and sulfur oxidation rates of microbial communities in solution from an industrial low grade copper bioleaching heap process at Escondida Mine in Chile. Pregnant leach solution (PLS) samples were analyzed periodically to determine physico-chemical parameters. The total numbers of the different microorganism species in industrial samples were determined by Real Time PCR. In addition, Most Probable Number assays (MPN) were performed for iron and sulfur oxidizing microorganisms. Kinetics incubation tests of PLS in the presence of iron or sulfur were performed to study the iron and sulfur oxidation, in total, 102 oxidation profile tests were obtained. Based on the oxidation profiles obtained, the tests were divided into four groups, labeled as fast, normal, stepped shape, and incomplete. The grouping system was established by considering oxidation time and rates, during the initial oxidation stages and accounted for any lag phase. A data mining technique, called decision trees was used to analyze the data and to generate rules that represented patterns in the data. Strong correlations were found between the predominant microorganisms and the behavior of the oxidation tests. Preliminary results indicate that the magnitude order of MPN of the iron oxidizing microorganisms is an important factor in the microbial oxidizing activity, followed by the predominant specie within the microbial population, PLS temperature and Eh.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3