XRD and EDXRF Analysis of Anatase Nano-TiO2 Synthesized from Mineral Precursors

Author:

Mahdi E.M.1,Abdul Shukor Mohd Hamdi2,Meor Yusoff Meor Sulaiman3,Wilfred Paulus3

Affiliation:

1. University Malaya

2. University of Malaya

3. Malaysian Nuclear Agency Bangi

Abstract

This work details the characterization of anatase nanoTiO2particles synthesized from Malaysian mineral precursors using the XRD and EDXRF. The properties that were analyzed were its crystallite sizes, relative crystallinity, phases, and chemical composition. It was determined that the crystallite size was quite small (15.6 nm), although the crystallinity of the sample is relatively low. The anatase phase seems to be dominant (100%), although in some cases when the processing parameters were changed or heat treatment were conducted, the existence of rutile is detected. The chemical composition showed that TiO2is the majority compound in the sample (~96%), although some metallic and non-metallic impurities are present (Zr, Nb, and S). It is concluded that Malaysian mineral precursors are capable of producing relatively high quality nanoTiO2.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3