Abstract
The authors review investigations which have provided fundamental knowledge on the use of a new generation of composite materials, namely textile-reinforced mortar (TRM) and textile-reinforced concrete (TRC), as strengthening and seismic retrofitting materials of existing concrete and masonry structures, as well as in the prefabrication of new reinforced concrete (RC) structural elements. In the first part of the paper, TRM are investigated as a means to provide confinement in concrete, to increase the deformation capacity of old-type RC columns subjected to simulated seismic loading, to increase the shear and flexural resistance of RC members and to increase the out-of-plane or in-plane strength of unreinforced masonry walls. In all cases, the effectiveness of TRM systems is quantified through comparison with equivalent fiber-reinforced polymer (FRP) ones. It is concluded that TRM jacketing is an extremely promising new technique, which is expected to enjoy the attention of the research community and to be employed in numerous applications in the near future. In the second part, the paper gives a brief overview of the application of TRC in the field of advanced prefabricated systems, with a focus on stay-in-place (or permanent) formwork elements in hybrid construction projects. Along these lines, the paper provides experimental results on the behavior of TRC/RC composite beams and one-way slabs under flexure. The results indicate that the use of prefabricated TRC stay-in-place formwork elements is a promising solution for achieving reduction of the construction time, minimization of labor cost and defect-free finishing of external surfaces.
Publisher
Trans Tech Publications, Ltd.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献