Abstract
A higher strength and heat resistance are increasingly demanded from the advanced engineering materials with high temperature applications in the aerospace industry. These properties make machining these materials very difficult because of the high cutting forces, cutting temperature and short tool life present. Laser assisted machining uses a laser beam to heat and soften the workpiece locally in front of the cutting tool. The temperature rise at the shear zone reduces the yield strength and work hardening of the workpiece, which make the plastic deformation of the hard-to-machine materials easier during machining. The state-of-the-art, benefits and challenges in laser assisted machining of metallic materials are summarized in this paper, and the improvement of tool life is discussed in relation to laser power, beam position and machining process parameters.
Publisher
Trans Tech Publications, Ltd.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Introduction to Laser‐Assisted Machining;Laser‐Assisted Machining;2024-05-02
2. Introduction;Hybrid-Energy Cutting of Aerospace Alloys;2024
3. A review on Laser Machining of hard to cut materials;Materials Today: Proceedings;2019
4. Laser assisted machining: a state of art review;IOP Conference Series: Materials Science and Engineering;2016-09