Ice Accretion Prediction for Single Airfoil and Multi-Element Airfoil

Author:

Sun Zhi Guo1,Zhu Cheng Xiang1,Zhu Chun Ling1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics

Abstract

Ice accretion on aircraft components is an enormous threat to flight safety. In this paper, ice accretions on the leading edge of the NACA 0012 airfoil and the NLR 7301 multi-element airfoil with flap are predicted using the icing code developed by us. This code mainly contains five modules which are grid module, airflow module, droplet module, heat module, and boundary reconstruction module. The effectiveness and robustness of this code are tested by executing the five modules orderly and repeatedly. The Spalart-Allmaras one-equation turbulence model is adopt to calculate the viscous airflow field and the four-order Runge-Kutta method is used to solve the droplet trajectory equations. In order to enhance the efficiency of the icing calculations, the multi-block grid technique is integrated into the grid module. Based on the above methods, numerical results in both two cases are presented and the necessary comparisons with the experimental data are given in corresponding chapters. The computational results show that performance of the icing code is very good for the wide range of icing conditions.

Publisher

Trans Tech Publications, Ltd.

Reference16 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3