Abstract
Tool wear monitoring plays an important role in the automatic machining processes. Therefore, it is necessary to establish a reliable method to predict tool wear status. In this paper, features of acoustic emission (AE) extracted from time-frequency domain are integrated with force features to indicate the status of tool wear. Meanwhile, a support vector machine (SVM) model is employed to distinguish the tool wear status. The result of the classification of different tool wear status proved that features extracted from time-frequency domain can be the recognize-features of high recognition precision.
Publisher
Trans Tech Publications, Ltd.