Affiliation:
1. Kumoh National Institute of Technology
Abstract
In an optical fiber manufacturing process, glass fibers drawn from the heated silica preform in the furnace should be sufficiently cooled down close to ambient temperature. As the fiber drawing speed continues to increase for better manufacturing productivity, the glass fiber cooling becomes more difficult and the use of helium injection into the glass fiber cooling unit is required to greatly enhance the fiber cooling effectiveness. The present study numerically simulates the flowfield and heat transfer phenomena on the glass fiber cooling in order to investigate the effects of helium injection and fiber drawing speed on the fiber cooling effectiveness of glass cooling unit. The results found that the amount of air entrainment at the unit inlet is the significant factor that decides the cooling effectiveness by significantly lowering the helium purity in cooling gas. Also, at a given fiber drawing speed, there exists a critical helium injection rate and the fiber cooling does not improve any more, even if the helium injection rate increases above this critical value.
Publisher
Trans Tech Publications, Ltd.