Growth and Characterization of InAs Quantum Dots on GaAsSb

Author:

Liu Guang Yan1,Wang Wen Cai2

Affiliation:

1. Binzhou Polytechnic

2. Beijing University of Chemical Technology

Abstract

The growth details of strained GaAsSb layers on GaAs(001) substrates were studied by reflection high energy electron diffraction (RHEED) beam intensity oscillations as a function of both substrate temperature and Sb/As flux ratio. Both the RHEED intensity and RHEED oscillation cycles are reduced with decreasing substrate temperature and Sb/As flux ratio. InAs QDs with high dot density, small dot size and narrow size distribution have been achieved on strained GaAs / GaAsSb buffer layer. The average lateral size of dots shows a trend toward to smaller size and dots’ density shows a trend toward to higher density as the surface Sb composition increasing. The QDs with higher density and smaller size distributions at high Sb composition, indicates that the Sb plays an important role in the dot formation under this growth condition. The lattice mismatch of InAs layer with the GaAsSb buffer layer is reduced with increasing of Sb composition in the GaAsSb interlayer. This result indicates that the density, size and size distribution of self-assembled quantum dots (QDs) can be controlled through the manipulation of the Sb-mediated strain field in the lattice mismatched system.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3