Application of Multidisciplinary Design Optimization to a Resource Satellite

Author:

Wu Wen Rui1,Huang Hai1,Wu Bei Bei1

Affiliation:

1. Beihang University

Abstract

Satellite system design is a process involving various branches of knowledge, in which the designer usually needs to tradeoff many essentials and takes remarkable time. While multidisciplinary design optimization (MDO) method provides an effective approach for complicated system design, it seems especially suitable for such kind design purpose. By applying MDO in satellite system design, the efficiency of design can be expected to be improved and powerful technical supports can be obtained, which means better performance, faster design process and lower cost. According to the Resource satellite mission, width of ground cover and ground resolution are taken as the performance measurement, which combined with total mass of satellite is accounted in the optimization objective in system level. The design variables and constraints of the problem are dealt with disciplines or subsystems such as GNC, power, structure and thermal control. Corresponding analysis modules close to practical engineering are modeled. A MDO program system is developed by integrating collaborative optimization (CO) methods in iSIGHT. The result shows that the comprehensive objective can be improved, which also indicates MDO is feasible and efficient to solve the spacecraft design problem. The technology can be consulted for further research work.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3