Artificial Intelligence Model of Surface Roughness for End Milling Operation of Steel and its Verification by Genetic Algorithm

Author:

Patwari Mohammed Anayet Ullah1,Amin A.K.M. Nurul1

Affiliation:

1. International Islamic University Malaysia (IIUM)

Abstract

Surface roughness is important for evaluating the machined surface quality. In this work, an Artificial Neural Network (ANN) surface roughness prediction model was developed by coupling it with Response Surface Methodology (RSM). For this interpretation, advantages of statistical experimental design techniques, experimental measurements, and artificial neural network were exploited in an integrated manner. Cutting experiments were designed based on small centre composite design technique to develop a RSM model. The input cutting parameters were: cutting speed, feed, and axial depth of cut, and the output parameter was surface roughness. The predictive model was created using a feed-forward back-propagation neural network exploiting the experimental data. The network was trained with pairs of inputs/outputs datasets generated by end milling medium carbon steel with TiN coated carbide inserts. The model can be used for the analysis and prediction of the complex relationships between cutting conditions and surface roughness, in metal-cutting operations, with the ultimate goal of efficient production. The ANN model was verified with the optimized parameters predicted by a coupled genetic algorithm (GA) and RSM technique also developed by the authors.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3