Abstract
We present an algorithm to compute Minkowski sum of general ployhedra, the algorithm removes unnecessary information of computing pairwise Minkowski sum by redundancy analysis and adopt heuristic sorting order to improve computing efficiency of union process, contrast experiments show the algorithm is efficient and suitable for CAD and CAM.
Publisher
Trans Tech Publications, Ltd.
Reference6 articles.
1. X.J. Guo, Y.L. Gao and Y. Liu. Optimization Algorithm for Computing Exact Minkowski sum of 3D Convex Polyhedra IJICIC, Vol-4, no. 6, (2008), pp.1401-1410.
2. P Hachenberger, L Kettner and K Mehlhorn. Boolean operations on 3d selective Nef complexes: data structure, algorithms, optimized implementation and experiments. Comput. Geom. Theory Appl., Vol-38, no1-2, (2007), pp.64-99.
3. G. Varadhan, D. Manocha. Accurate Minkowski sum approximation of polyhedral models. Graph Models. Vol-68, no. 4, (2006), p.343–355.
4. J.M. Lien. Covering Minkowski sum boundary using points with applications. Comput. Aided Geom. Des., Vol-25, no. 8, (2008), pp.652-666.
5. P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of minkowski sums . European Symposium on Algorithms, (2000), p.20–31.