An Experiential Optimization Design Method for Orthogonal Rib-Stiffened Thin Walled Cylindrical Shells under Axial Loading

Author:

Mao Jia1,Chen Yu Feng1,Zhang Wei Hua2

Affiliation:

1. National University of Defense Technology (NUDT)

2. National University of Defense Technology

Abstract

Parametric structural FEA (Finite Element Analysis) models of the orthogonal rib-stiffened thin walled cylindrical shells are established using APDL (ANSYS Parametric Design Language). An experiential optimization design method is then developed based on conclusions of series numerical analysis investigating the effects of parameters’ modification upon buckling loads and modes of the structure. The effects of single design parameter modification under both variational and fixed volume (mass) constraints upon the buckling loads and modes indicate that, only one design scheme is able to obtain maximum buckling load when deployment of the strengthening ribs and volume (mass) parameter were settled previously, and minimum mass would be obtained while this maximum buckling load equals to the required design load. Optimization calculations for aluminum alloy material and layered C/E (Carbon/Epoxy) composite material shells with three layering styles are implemented and discussed, and some useful conclusions are obtained. Method and approach developed in this paper provide certain reference value for the optimal design of such structures.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3