Affiliation:
1. University of Tehran
2. IAU, Central Tehran Branch
Abstract
In this paper, Free vibration analysis of a finite length composite shell panel with an embedded piezoelectric sensor, using three-dimensional elasticity solution, is presented. To this end, two different methods are applied to solve the governing equations of the problem. In the first method, the displacement field is derived using trigonometric function expansion in circumferential and longitudinal directions. Using the method of changing variables, the governing partial differential equations are reduced to ordinary differential equations. Then these equations are solved simultaneously with outer and inner boundary conditions to give the natural frequencies and shape modes of the shell panel. In the second method the highly coupled partial differential equations are reduced to ordinary differential equations by means of trigonometric function expansion in circumferential and axial directions and then the finite difference method is applied to evaluate the obtained differential equations in radial direction. Then, the natural frequencies of the multi-layered panel are calculated using the obtained ordinary differential equations. At last, some numerical examples are presented to compare the results obtained by these two different methods. Three layered laminated shell panel is assumed to be [0/90/P].
Publisher
Trans Tech Publications, Ltd.